Journal Search Engine
Search Advanced Search Adode Reader(link)
Download PDF Export Citaion korean bibliography PMC previewer
ISSN : 1226-7155(Print)
ISSN : 2287-6618(Online)
International Journal of Oral Biology Vol.33 No.3 pp.113-116
DOI :

Inhibition of osteoclast formation by putative human cementoblasts

Hyun-Jung Ko, Kim Mi-Ri, Yang Won-Kyung, Grzesik Wojciech
Department of Dentistry, Asan Medical Center, University of Ulsan
Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania

Abstract

Cementum is the mineralized tissue of the tooth. It is similar to bone in several aspects but it differs from bone. Human bone marrow stromal cells (BMSC) and human cementum derived cells (HCDC) (10,000 cells/cm²) were plated in 6 well plates as feeder cells. The next day, mouse bone marrow cells (1.5 million cells/cm²) were added. One group of these plates were incubated in serum-free conditioned medium (SFCM) generated from BMSC or HCDC supplemented with 2% FBS, parathyroid hormone (PTH), 1, 25 dihydroxyvitamin D₃ (Vit. D₃) and dexamethasone, or plain medium with the same supplements. Another group of plates were cocultured with BMSC or HCDC in plain medium supplemented with 2% FBS, PTH, Vit. D₃and dexamethasone. Plates grown without SFCM or coculture were used as controls. After 10 days, the cells were stained for tartrate-resistant acid phosphatase (TRAP). BMSC were found to support osteoclast formation under normal conditions. This was inhibited however by both SFCM generated from HCDC and also by coculture with HCDC. In addition, HCDC themselves did not support osteoclast formation under any conditions. Our results thus indicate that HCDC do not support osteoclast formation in vitro and that soluble factor (s) from HCDC may inhibit this process. In addition, we show that this inhibition also involves an active mechanism that is independent of osteoprotegerin, a feature that may distinguish cementoblasts from other cells present in periodontium.

Reference